

A Revolutionary New Material for New Solutions

The Solution

Lafarge was able to help the architect transform his **dream...**

...to reality!

The Solution

Lafarge was able to help the architect transform

his dream...

...to reality!

Imagine if it were made out of Ductal.

The Bridge of the Future

Lafarge is helping the FHWA & MIT transform

their **Vision** of the **Bridge of the Future** ...

to reality!

The Lafarge Group

- Over €15 billion in sales worldwide
- Over 83,000 people in 75 countries

Products

- Cement
- Aggregate and Concrete
- Roofing
- Gypsum
- Specialty Products

Innovation

A major research collaboration resulted in a technological breakthrough.

A new material with a unique combination of superior characteristics:

- ultra-high performance with ductility
 - ✓ strength, ductility, durability
- easy to use & highly mouldable
 - ✓ flowable, dry-cast, form replication
 - superior aesthetics & quality surface aspect
 - ✓ colors, textures, surface

Compressive Strength:

150 MPa to 200 MPa

Flexural Strength:

20 MPa to 50 MPa

Ductility:

Greater capacity to deform and support flexural and tensile loads, even after initial cracking

Abrasion Resistance:

Similar to natural rock

Impermeability:

Almost no carbonation or penetration of chlorides

Buctal®

Key points of the *Ductal*® mix design:

- Ductility
- Synergy of two sizes of fibers
- Grading optimization (modified Compactness Theory)
- An efficient Cement-Superplasticizer couple

Ductility

Greater capacity to deform and support flexural and tensile loads, even after initial cracking!

Batimat -**French Construction Show**

Deflection (mm)

Synergy of two sizes of fibers:

Activation of bond → microcracking → micro-reinforcement

Optimum Mix Compactness:

Shear/ no place for fibers!

Modified Mix: ** **Muctal**

Modified compact grading

Ductal Typical Values for Ductal® FM

		Ductal FM (2% volume Steel Fibres)	
	15	3 days (incl. thermal treatment at 90°C for 48 hr)	28 days (wet room curing)
Compressive Strength (75 mm dia. X 150 mm length)	MPa	235	195
Flexural Strength (40 mm X 40 mm X 160 mm bending test)	MPa	45	40
E-Modulus	GPa	60	57

Equal Load Carrying Capacity

MASS (WEIGHT) OF BEAMS

lbs/lineal ft. 94 75 313 355

DURABILITY

		HPC (60 MPa)	Ductal (2% Steel Fibers 90°C Thermal Treatment)
Abrasion (relative volume loss)	Index I	2.75	1.2
Freeze-thaw (residual E-mod after 300 cycles)	%	90%	100%
Carbonation (depth of penetration)		2 mm	0
Chloride ion diffusion	X10 ⁻¹² m ² /s	0.5	0.02
Post-curing shrinkage	10-6	300	0

U.S. Army Corp. of Engineers **Long Term Exposure Site**

Imagine if it were made out of Ductal. **EXPOSURE:** 500 freeze/thaw cycles and 4500 wet/dry cycles in saturated sea water

Treat Island, Maine, USA

August 14, 2002

Urban Furniture

Interior Furnishings

Decorative

Imagine if it were made out of Ductal.

Architectural Cladding

Imagine if it were made out of Ductal.

Security Applications

- Safety Vaults for USA & Canadian Market.
- High Impact Resistant Containers for material storage.
- Impact Resistant Containers for the Military

Leading innovations

LAFARGE

Industrial Applications

Overview

Quantity – 19 Ductal Anchor Blocks

- 1.88 m3 of Ductal

Client: Alberta Infrastructure Completed – Fall '04

Deerfoot Meadows - Calgary, AB

Foot Bridges

Ecosmart Ramp, Vancouver, BC

Yamagata Footbridge, Japan

Footbridge of Peace, Seoul, Korea

Papatatoe LRT Bridge, NZ

Sherbrooke Footbridge, Quebec

Imagine if it were made out or Duy

Lead Sakata Mirai Footbridge, Japan

Highway Bridges

McLean, Virginia

Wapello, Iowa

Washington, DC

NSW, Australia

Showcase Project: Shawnessy LRT Station

Shawnessy LRT Station

Precaster: Lafarge (Calgary)
Owner: City of Calgary

Architect: Culham, Pedersen & Valentine (CPV)

Ductal Volume: 80 m³

Description: Architectural roof over a pedestrian

unloading area.

Advantages: Aesthetics, reduced maintenance

light weight system, fewer pilings, speed of installation, economics

Ductal Components

- 1. Louvers and glazing
- 2. Grate
- 3. Ductal rain trough
- 4. Ductal canopy
- 5. Glazing

CANOPY MODULE

Forming / Casting / Demolding

Canopy Production

gine if it we

GE

Installing the Canopies

Installed Canopies

1-Scale Load-Testing at the U of C

- full snow load

At full factored loads, maximum strains were 60% of cracking strain - Full Wind Uplift

Imagine if it were made out of Ductal.

Architect's dream...

...to reality!

ere made out of Ductal.

Leading innovations

Collaborations with Universities

Columns, Terminal, Detroit

- •*MIT* 2-D & 3-D modeling.
- •Ohio University Pullout Tests for Strand
- Iowa State University Seismic Modeling (Short term, high amplitude low frequency response).
- •Michigan Technical University size effects
- •NY State, Buffalo Cutting and recycling
- U of Calgary Full Scale Load Testing
- Virginia Tech Punching Shear
- Georgia Tech Full Scale Beam Tests
- •*UNB* Durability @ Treat Is(US Army Corp)
- •others....

