December 2008 Technical National Exams

Geom-A5 Remote Sensing and Image Analysis

(3 hours duration)

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is a ClOSED BOOK EXAM. Any Sharp or Casio approved calculators are permitted.
- 3. FIVE (5) questions constitute a complete exam paper. The first five questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.

04-Geom-A5 Remote Sensing and Image Analysis

Candidate ID:	Name:	Signature:
---------------	-------	------------

Give answers to any five (5) of the following seven questions [100% total, 20 marks each].

- 1. Define nearest neighbor, bilinear, and cubic convolution resampling techniques? What are their advantages and disadvantages when applying them to intensity interpolation process for geometric correction of remote sensing imagery?
- 2. Define the terms of special, spatial, temporal, and radiometric resolution. Using Landsat-7 ETM+ and IKONOS image data to compare their characteristics in terms of those resolutions.
- 3. Given the following error matrix of the classification map derived from Landsat-7 ETM+ data, compute the producer's, the users, and the overall accuracy as well as Kappa coefficient of agreement.

		Reference data					
		Residential	Commercial	Wetland	Forest	Water	
Classification results	Residential	70	5	0	13	0	
	Commercial	3	55	0	0	0	
	Wetland	0	0	99	0	0	
	Forest	0	0	4	37	0	
	Water	0	0	0	0	121	

4. Describe the principle of the object-oriented classification method and explain its advantages over the pixel-based classification method in land use and land cover classification using commercial high-resolution multispectral satellite imagery.

- 5. Define the two conventional classifiers, Minimum Distance to Means and Maximum Likelihood. What are their advantages and disadvantages when applying them for supervised classification?
- 6. Given 1 m resolution panchromatic and 4 m resolution multispectral image data of IKONOS, explain how to generate a 1 m resolution natural colour composite through the pan-sharpening process using the IHS transform approach.
- 7. Give Landsat-7 ETM+ panchromatic and multispectral images, list six kinds of vegetation index.