National Exams December 2009 04-BS-1, Mathematics 3 hours Duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. NO CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme:

- 1. 20 marks
- 2. 20 marks
- 3. (a) 10 marks, (b) 10 marks
- 4. 20 marks
- 5. 20 marks
- 6. 20 marks
- 7. (a) 10 marks, (b) 10 marks
- 8. 20 marks

1. Solve the initial value problem

$$y'' - 4y = 3t + e^{2t},$$
 $y(0) = 0, y'(0) = 2.$

Note that ' denotes differentiation with respect to t.

2. An elastic membrate in the x_1x_2 -plane with boundary circle $x_1^2 + x_2^2 = 1$ is stretched so that a point $P:(x_1,x_2)$ goes over into the point $Q:(y_1,y_2)$ given by

$$y_1 = 5x_1 + 3x_2,$$

$$y_2 = 3x_1 + 5x_2.$$

Find the principal directions of the transformation. These are the directions of the position vectors \mathbf{x} of all points P for which the direction of the position vector \mathbf{y} of Q is the same or exactly opposite. What shape does the boundary circle take under the deformation?

- 3. Let P be the plane passing through the three points (0,1,2), (1,3,-1) and (2,0,1).
 - (a) Find an equation representing the plane P.
 - (b) Find the line of intersection between the plane P and the plane x 2y + z = 3.
- 4. Find the general solution, y(x), of the differential equation

$$2x^2y'' + xy' - 3y = \frac{4}{x}.$$

Note that ' denotes differentiation with respect to x.

- 5. Find the minimum value of the function $F(x, y, z) = 2x^2 + y^2 + 3z^2$ subject to the constraint x + y z + 1 = 0
- 6. Evaluate the line integral of **F** over the curve C, where C be the curve formed by the intersection of the cylinder $x^2 + y^2 = 4$ and the plane z = 2 + x 2y, travelled clockwise as viewed from the positive z-axis, and let **F** be the vector function $\mathbf{F}(x, y, z) = 4z\mathbf{i} y\mathbf{j} + y\mathbf{k}$.
- 7. Let $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.
 - (a) Find the linear approximation to f at (2,3,6).
 - (b) Use this to approximate $\sqrt{(1.97)^2 + (3.02)^2 + (5.98)^2}$
- 8. Find the volume of the region bounded by the paraboloid $z = \frac{7}{4} + \frac{1}{4}(x^2 + y^2)$ and the plane z = 4 that lies outside the cone $z^2 4x^2 4y^2 = 0$.