National Exams - December 2009

07-Elec-A4, Digital Systems & Computers

3 Hours Duration

NOTES

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made;
- 2. Candidates may use one of two calculators, the Casio or Sharp approved models. This is a Closed Book exam.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value

Marking Scheme:

- 1. (a) 2, (b) 4, (c) 10, (d) 4
- 2. (a) 4, (b) 8, (c) 8
- 3, 20
- 4. 20
- 5. (a) 6, (b) 6, (c) 8
- 6. 20

- 1. Considering the Karnaugh map shown below for variables A, B, C and D.
 - a) Draw the Truth Table which the K map represents.
 - b) Write the min term expression $f(A, B, C, D) = \sum m$ ().
 - c) Write the logical function derived from the K-map, and
 - d) Draw the logic gate architecture, which realizes the logical function obtained in c).

	∖AB				
	CD	00	01	11	10
20	00	1	0	12	8
	01	1	5	13	9
	11	3	7 0	15	11
	10	0	1	0	0

- 2. Considering the sequential circuit below:
 - a) Determine the input functions to each JK flip-flop in terms of A, B, and x.b) Construct the state table for the sequential circuit.

 - c) Draw and label the state diagram for the sequential circuit.

20

- 3.

 The following is a state table for a sequential circuit which has a number of unused states. Draw the logic diagram of the **minimum** sequential circuit which implements the truth table. Your answers should include:
 - a) K-maps for SA, SB, SC, RA, RB, RC, and Y
 - b) Logical functions for SA, SB, SC, RA, RB, RC, and y
 - c) The designed circuit.

- 4	٩	2	٩
	,	ſ	1
- 2	,	١	ı
- 4	-	٠,	,

Present State Input	Next State	Flip-Flop Inputs	Output
A B C X	A B C	SA RA SB RB SC RC	y
0 0 1 0	0 0 1	0 X 0 X X 0	.0
0 0 1 1	0 1 0	0 X 1 0 0 1	0
010 0	0 1 1	0 X X 0 1 0 1 0 0 1 0 X	0
0 1 0 1 0	1 0 0	0 X 0 1 X 0	- 0
0 1 1 1	100	1 0 0 1 0 1	0
100	1 0 1	X 0 0 X 1 0	0
1.00	1 0 0	XOOXOX	- 1 - 1
101 0	0 0 1	0 1 0 X X 0 X 0 0 X 0 1	1

4. Identify the following logic circuit by constructing a truth table and/or timing diagram to display the states of Q₁ to Q₈ when the circuit is clocked with sixteen clock pulses. Assume that the JK flip-flops are triggered on the negative or trailing edge of the clock pulse.

5.

- a) How many 128 x 8 RAM chips are needed to provide a memory capacity of 2048 bytes?
- How many lines of the address must be used to access 2048 bytes? How many of these lines are connected to the address inputs of all chips?
- e) How many lines must be decoded for the chip-select inputs? Specify the size of the decoder.

5.

- 2) How many 128 x 8 RAM chips are needed to provide a memory capacity of 2048 bytes?
- b) How many lines of the address must be used to access 2048 bytes? How many of these lines are connected to the address inputs of all chips?
- e) How many lines must be decoded for the chip-select inputs? Specify the size of the decoder.

6.

The following is the basic architecture of a computer. Construct a table which has three headings: Clock Cycle, Micro Operation, and Explanation. For each clock cycle give the micro operations necessary to call a subroutine stored in memory. This is the CSR instruction. For each micro operation provide an explanation of the transfer or interchange of addresses or contents of the memory, registers, etc.

