NATIONAL EXAMINATIONS - December 2009

98-CS-1 Engineering Economics

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear statement of any assumptions made.
- 2. The use of any non-communicating calculator is permitted. This is an open book examination.
- 3. Any four questions constitute a complete paper. Only the first four questions, as they appear in your answer book, will be marked.
- 4. The questions are of equal value.

Question 1

Your company is planning to install a new facility in its Edmonton plant for manufacturing air cleaning equipment for coal fired power stations. The project life is 8 years. MARR (the minimum attractive rate of return) is i %. The anticipated after tax cash flows of the project (in millions of dollars) are given below:

End of year	0	1	2	3	4	5	6	7	8
Cash flow	-6.5	2.0	2.0	2.0	X + 2.0	2.0	2.0	2.0	Y+2.0

Determine:

a) the value of Y if the present value of the project is \$4,600,000, X=0 and	
i=12% (monthly compounding)	(5 marks)
b) the present value of the Project if Y=X, the equivalent uniform annual value	(= =====)
of the project is 1.5X and i=10% (yearly compounding)	(5 marks)
c) the value of Y if $X = 0$, $i = 10\%$ (yearly compounding) and the external rate of	(= =====)
return of the Project is 20%	(5 marks)
d) the internal rate of return if $X = -3.0$ and $Y = 1.0$	(5 marks)
e) the minimum value of X that would make the project (economically) acceptable	(ZZZZZZZZ
if i = 10 % (yearly compounding) and Y=4X	(5 marks)

Question 2

X. I. Metals Ltd. operates an assembly plant in Winnipeg. This plant, which was opened three years ago, is equipped with a variety of production machinery (equipment) having a book value of \$1,209,600 at the end of the third year of the operation of the plant. The capital cost allowance rate for this equipment is 40%. The purchase of this equipment (three years ago) was partially financed by a \$3,000,000 bank loan. This bank loan is being repaid (principal as well as interest) by five equal (end of year) annual payments. The loan interest rate is 8% (yearly compounding). The income tax rate is 30%.

Some additional financial information – estimated revenue and costs in the fourth year of operation of the plant are given below:

Revenue	\$14,800,000
Material cost	\$ 3,600,000
Labour cost	\$ 5,100,000
Overhead costs	\$ 1,200,000
Rent	\$ 860,000

Determine:

a) the yearly loan payment	(3 marks)
b) the interest portion of the fourth loan payment	(4 marks)
c) the initial cost of the equipment	(4 marks)
d) the income tax payable (in the fourth year)	(7 marks)
e) the after tax cash flow (in the fourth year)	(7 marks)

Question 3

General Ind. manufactures car seats in Oshawa. Chromium plating of certain components of the seats are currently done by a sub-contractor for \$Y/year. The Engineering Department of General Ind. prepared three alternative proposals for building a plating shop at the company's Mississauga plant to perform the plating work in-house. The planning period for this plating shop is n years. MARR (the minimum attractive rate of return) for the company is 12 %. The financial information regarding the proposals is given below:

Initial cost, \$	proposal 1 3,780,000	proposal 2 4,200,000	proposal 3 5,050,000
Operating cost, \$/year Salvage value, \$	X	370,000	165,000
	300,000	300,000	300,000

Determine:

 a) the preferred proposal if X = 440,000 and n = 8. b) the yearly saving if the preferred proposal is implemented 	(10 marks)
and $Y = 1,600,000$ c) the minimum value of n that would make implementation of	(5 marks)
proposal 2 economically justified if Y = 1,300,000 d) the maximum value of X that would make proposal 1 preferred	(5 marks) (5 marks)

Question 4

Vancouver City Council considers three alternative proposals for implementation for widening Stanley Bridge and its access roads. The Project life is 20 years. The interest rate is i %. The financial details of the proposals (costs, savings, and the perceived monetary equivalents of benefits and disbenefits resulting from the implementation of the Project) are given below:

Proposal:	${f A}$	В	C
Construction cost, \$	22,500,000	17,000,000	X
Road maintenance costs, \$/year	910,000	780,000	530,000
Traffic flow improvements, \$/year	1,350,000	1,200,000	1,980,000
Travel safety improvements, \$/year	430,000	880,000	970,000
Reduced air pollution, \$/year	250,000	•	120,000
Increased noise pollution, \$/year		500,000	,
Traffic policing costs reduction, \$/year	460,000	360,000	

Determine:

a) the present value of the benefits minus costs for Proposal B if $i = 4\%$	(5 marks)
b) the benefit cost ratio for Proposal A if $i = 4\%$	(5 marks)
c) the maximum value of X that would make Proposal C acceptable	(5 marks)
d) the preferred Alternative if $i = 4\%$ and $X=28,500,000$	(10 marks)
2 20,000,000	(10 marks)

Question 5

A CNC lathe, used in a production process, requires major repair. The machine could either be completely overhauled (repaired) for \$X or replaced by a new machine for \$1,100,000. MARR (the minimum attractive rate of return) is 10 %. The lathe is required for 5 additional years. The O/M (operating and maintenance) costs and the salvage values for both (existing and new) machines are given below:

End of year	1	2	3	4	5
Existing machine:				٠,	J
O/M cost, \$/year	140,000	140,000	140,000	320,000	140,000
Salvage value, \$	0	0	0	Ó	0
New machine:					Ü
O/M cost, \$/year	55,000	55,000	115,000	55,000	55,000
Salvage value, \$	900,000	760,000	430,000	200,000	65,000

Determine:

a) the equivalent uniform annual cost of keeping (repairing and using) the	
existing machine if $X = 470,000$	(5 marks)
b) the range of values of X for which repair would be preferred	(5 marks)
c) the yearly saving if the machine is replaced and $X = 710,000$	(5 marks)
d) the internal rate of return of this Project if the machine is replaced	(= 1111111)
and $X = 750,000$	(10 marks)