NATIONAL EXAMINATIONS DECEMBER 2010

04-BS-5 ADVANCED MATHEMATICS

3 Hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumption made.
- 2. Candidates may use one of the approved Casio or Sharp calculators. This is a Closed Book Exam. However, candidates are permitted to bring **ONE** aid sheet (8.5"x11") written on both sides.
- 3. Any five (5) questions constitute a complete paper. Only the first five answers as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme

- 1. 20 marks
- 2. (a) 14 marks; (b) 6 marks
- 3. (a) 10 marks; (b) 10 marks
- 4. (a) 12 marks; (b) 8 marks
- 5. 20 marks
- 6. (a) 8 marks; (b) 12 marks
- 7. (a) 10 marks; (b) 10 marks

1. Consider the following differential equation:

$$(x^2 - 4)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + y = 0$$

Find two linearly independent power series solutions about the ordinary point x=0.

2. (a) Find the Fourier series expansion of the periodic function F(x) of period $p=2\pi$.

$$F(x) = x^2$$
; $0 < x < 2\pi$

(b) Use the result obtained in (a) to prove that

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

3.(A) Prove that the coefficients α and β of the least-squares parabola $Y = \alpha X + \beta X^2$ that fits the set of n points (X_i, Y_i) can be obtained as follows

$$\alpha = \frac{\left\{ \sum_{i=1}^{i=n} X_{i} Y_{i} \right\} \left\{ \sum_{i=1}^{i=n} X_{i}^{4} \right\} - \left\{ \sum_{i=1}^{i=n} X_{i}^{2} Y_{i} \right\} \left\{ \sum_{i=1}^{i=n} X_{i}^{3} \right\}}{\left\{ \sum_{i=1}^{i=n} X_{i}^{2} \right\} \left\{ \sum_{i=1}^{i=n} X_{i}^{4} \right\} - \left\{ \sum_{i=1}^{i=n} X_{i}^{3} \right\}^{2}}$$

$$\beta = \frac{\left\{ \sum_{i=1}^{i=n} X_{i}^{2} \right\} \left\{ \sum_{i=1}^{i=n} X_{i}^{2} Y_{i} \right\} - \left\{ \sum_{i=1}^{i=n} X_{i}^{3} \right\} \left\{ \sum_{i=1}^{i=n} X_{i} Y_{i} \right\}}{\left\{ \sum_{i=1}^{i=n} X_{i}^{2} \right\} \left\{ \sum_{i=1}^{i=n} X_{i}^{4} \right\} - \left\{ \sum_{i=1}^{i=n} X_{i}^{3} \right\}^{2}}$$

3.(B) It has been suggested that the following set of n=7 points (X_i, Y_i) are related by an equation of the form $Y = \alpha + \beta X$. Use the method of least squares to find an estimate of the coefficients α and β .

X	0	1	2	3	4	5	6
Y	66	52	49	35	23	18	4

4.(A) Given the following data find Newton's interpolating polynomial of highest possible degree.

х	-4	-3	-2	-1	0	1	2	3	4
f(x)									

4.(B) The following table displays the values of a certain function f(x) for a set of values of the independent variable x. Use the formulas given below the table to obtain an approximate value of the derivative of this function for x=-2,-1,0,1,2. Let $x_0 = -2$ and h = 1. Note that $f^{(1)}(x)$ denotes the first derivative of f(x).

$$\frac{x}{f(x)} \frac{-5}{-1559} \frac{-4}{-396} \frac{-3}{-793} \frac{-2}{-1100} \frac{-1}{-747} \frac{0}{116} \frac{1}{979} \frac{2}{1332} \frac{3}{1025} \frac{4}{628} \frac{5}{1791}$$

$$f^{(1)}(x_0) \approx \frac{1}{12h} \Big[-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \Big]$$

$$f^{(1)}(x_0 + h) \approx \frac{1}{12h} \Big[-3f(x_0) - 10f(x_0 + h) + 18f(x_0 + 2h) - 6f(x_0 + 3h) + f(x_0 + 4h) \Big]$$

$$f^{(1)}(x_0 + 2h) \approx \frac{1}{12h} \Big[f(x_0) - 8f(x_0 + h) + 8f(x_0 + 3h) - f(x_0 + 4h) \Big]$$

$$f^{(1)}(x_0 + 3h) \approx \frac{1}{12h} \Big[-f(x_0) + 6f(x_0 + h) - 18f(x_0 + 2h) + 10f(x_0 + 3h) + 3f(x_0 + 4h) \Big]$$

$$f^{(1)}(x_0 + 4h) \approx \frac{1}{12h} \Big[3f(x_0) - 16f(x_0 + h) + 36f(x_0 + 2h) - 48f(x_0 + 3h) + 25f(x_0 + 4h) \Big]$$

5. Use the Romberg algorithm with n = 2 to find the area bounded by $f(x)=(8 + 19x^2)^{2/3}$, x=0, x=1 and y=0.

Hint: The Romberg algorithm produces a triangular array of numbers, all of which are numerical estimates of the definite integral $\int_a^b f(x)dx$. The array is denoted by the following potation:

following notation:

where

$$R(0,0) = \frac{1}{2}(b-a)[f(a) + f(b)]$$

$$R(n,0) = \frac{1}{2} R(n-1,0) + h \sum_{k=1}^{2^{n-1}} f[a + (2k-1)h]$$

where
$$h = \frac{b-a}{2^n}$$

 $R(n,m) = R(n,m-1) + \frac{1}{4^m - 1} [R(n,m-1) - R(n-1,m-1)]$

6.(A) One root of the equation $2e^{-x} - \sin x = 0$ lies between 0.8 and 1.0. Use the method of bisection five times to find a better approximation of this root. (Note: Carry five significant digits in your calculations).

6.(B) (i) One root of the equation $x^3 - 20x^2 + 110x - 123 = 0$ is close to $x_0 = 1.0$. Use the following iterative formula three times to find a better approximation of this root (Note: Carry seven significant digits in your calculations).

$$x_{i+1} = x_i - \frac{f(x_i)}{f^{(1)}(x_i) - \frac{f(x_i)f^{(2)}(x_i)}{2f^{(1)}(x_i)}}$$

[Hint: Let $f(x) = x^3 - 20x^2 + 110x - 123$. Note that $f^{(1)}(x)$ represents the first derivative of f(x). Similarly $f^{(2)}(x)$ represents the second derivative of f(x)].

(ii) Let r_1 be the root you obtained in (i). Find the other two roots by solving the quadratic equation g(x) = 0 where $g(x) = f(x)/(x - r_1)$.

7. The symmetric positive definite matrix $A = \begin{bmatrix} 9 & -6 & 9 \\ -6 & 20 & 14 \\ 9 & 14 & 38 \end{bmatrix}$ can be written as the

product of a lower triangular matrix $L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix}$ and its transpose L^T , that is

 $A=LL^{T}$.

(a) Find L and L^{T} .

(b) Use L and L^T to solve the following system of three linear equations:

$$9x_1 - 6x_2 + 9x_3 = 21$$

 $-6x_1 + 20x_2 + 14x_3 = -34$
 $9x_1 + 14x_2 + 38x_3 = 0$