National Exams May 2011 04-BS-1, Mathematics 3 hours Duration

Notes:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. NO CALCULATOR is permitted. This is a CLOSED BOOK exam. However, candidates are permitted to bring ONE AID SHEET written on both sides.
- 3. Any five questions constitute a complete paper. Only the first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

Marking Scheme:

- 1. 20 marks
- 2. 20 marks
- 3. 20 marks
- 4. 20 marks
- 5. 20 marks
- 6. 20 marks
- 7. 20 marks
- 8. 20 marks

1. Compute the response of the damped mass-spring system modelled by

$$y'' + 3y' + 2y = r(t),$$
 $y(0) = 0,$ $y'(0) = 0,$

where r is the square wave

$$r(t) = \begin{cases} 1, & 1 \le t < 2, \\ 0, & \text{otherwise,} \end{cases}$$

and 'denotes differentiation with respect to time.

2. Solve the initial value problem

$$t^2y'' - 4ty' + 6y = \pi^2 t^4 \sin \pi t,$$
 $y(1) = 5,$ $y'(1) = 5 + \pi,$

where ' denotes differentiation with respect to t.

3. Find the general solution, y(x), of the differential equation

$$y'' + 2y' + 2y = 3e^{-x}\cos 2x,$$

where ' denotes differentiation with respect to x.

4. An elastic membrate in the x_1x_2 -plane with boundary circle $x_1^2 + x_2^2 = 1$ is stretched so that a point $P: (x_1, x_2)$ goes over into the point $Q: (y_1, y_2)$ given by

$$y_1 = 5x_1 + 3x_2,$$

$$y_2 = 3x_1 + 5x_2$$

Find the principal directions of the transformation. These are the directions of the position vectors \mathbf{x} of all points P for which the direction of the position vector \mathbf{y} of Q is the same or exactly opposite. What shape does the boundary circle take under the deformation?

5. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot dS$, where

$$F(x, y, z) = 4xi + 2x^2j - 3k,$$

S is the surface of the region bounded by the cone $z=4-\sqrt{x^2-y^2}$ and the plane z=0.

- 6. Let C be the curve formed by the intersection of the cylinder $x^2 + y^2 = 1$ and the plane z = 1 + y, and let v be the vector function $\mathbf{v} = 4z\mathbf{i} 2x\mathbf{j} + 2x\mathbf{k}$. Evaluate the line integral $\oint_C \mathbf{v} \cdot d\mathbf{r}$. Assume a clockwise orientation for the curve when viewed from above.
- 7. Find a formula for the plane tangent to the surface z = f(x, y) with $f(x, y) = 1 + x \ln(xy 5)$ at the point (2,3) and use the tangent plane to approximate f(1.9,3.05).
- 8. Find the minimum value of the function $F(x, y, z) = 2x^2 + y^2 + 3z^2$ subject to the constraint x + y z = 7.