National Exams December 2012

07-Elec-B5, Advanced Electronics

3 hours duration

Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a CLOSED BOOK EXAM.

 One of two calculators is permitted any Casio or Sharp approved models.
- 3. Any **5** (FIVE) questions constitute a complete paper. The first five questions as they appear in the answer book will be marked.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

QUESTION (1)

The following op amp has a finite gain, finite input resistance and non-zero output resistance.

Using feedback theory, determine the following parameters:

a) voltage gain, V_O/V_S

(8 points)

b) input resistance, R_{in}

(6 points)

c) output resistance, R_{out}

(6 points)

QUESTION (2)

In a particular power amplifier design, the power transistor needs to dissipate 21.6W, and the data sheet for this transistor specified a die to case thermal resistance of $R_{\theta IC} = 2.5^{\circ}$ C/W. If the ambient temperature is $T_A = 25^{\circ}$ C, what is the maximum allowable case-to-ambient thermal resistance, $R_{\theta CA} = R_{\theta CS} + R_{\theta SA}$? (20 points)

QUESTION (3)

An op amp has an open-loop transfer function (without C_f) and the corresponding equivalent circuit as shown below. The open-loop first pole and second pole locations are at 0.1 MHz and 1 MHz, respectively. The first pole is caused by the input circuit of that stage, and that the second pole is introduced by the output circuit. Compensate this op amp using C_f such that it will be stable. Provide justification for your choice of C_f . What will be the frequencies of the new first and second poles? What will be the new phase margin? (20 points)

Source: Sedra and Smith, Microelectronics

QUESTION (4)

In the following tuned amplifier circuit, transistor M_1 is biased with $I_{bias} = 2$ mA. The transistor parameters are given as K = 1 mA/V², $V_{TH} = 1$ V, $C_{gs} = 10$ pF, $C_{gd} = 1$ pF, and $\lambda = 0$.

For:
$$V_{DD} = 10 \text{ V}$$
,
 $L_{I} = 1 \text{ } \mu\text{H}$
 $C_{1} = 200 \text{ pF}$, $C_{2} = \infty$
 $R_{S} = 1 \text{ } k\Omega$, $R_{L} = 2 \text{ } k\Omega$

- a) What is the center frequency, ω_o of this amplifier? (4 points)
- b) What is the gain v_{OUT}/v_S at $\omega = \omega_o$? (8 points)
- c) What is the 3dB bandwidth of this tuned amplifier? (8 points)

Useful formulae: for n-channel MOSFET

$$i_{DS} = K \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

$$i_{DS} = \frac{1}{2}K\left(v_{GS} - V_{TH}\right)^2 \left(1 + \lambda v_{DS}\right)$$

triode region

saturation region

QUESTION (5)

An analog signal in the range -0 to + 10 V is to be converted to an 8-bif digital signal.

a) What is the resolution of the conversion in volts?

(4 points)

b) What is the digital representation of an input of 6 V?

(4 points)

c) What is the representation of an input of 6.2 V?

(4 points)

- d) What is the error made in the quantization of 6.2 V in absolute terms and in percentage of the input? And as a percent of full scale? (4 points)
- e) What is the largest possible quantization error as a percentage of full scale?

(4 points)

QUESTION (6)

The bipolar circuit is biased with a current of $I_1 = 1$ mA. Determine the voltage gain v_{OUT}/v_{IN} . (20 points)

Given:

$$\beta = 100$$
$$V_A = 5 \text{ V}$$

$$V_{CC}$$
 V_{CC}
 V_{OUT}
 $V_{IN} \longrightarrow Q_2$