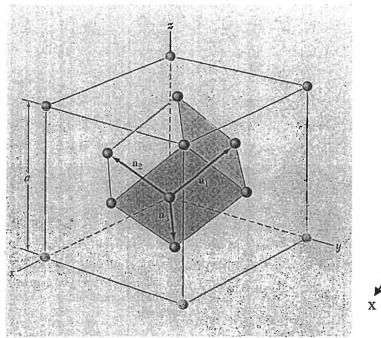
NATIONAL EXAMS

Phys-A6: Solid State Physics

3 hours duration


NOTES:

- 1. If doubt exits as to the interpretation of any question, the candidate must submit with the answer paper, a clear statement of any assumption made.
- 2. Candidates may use one of two calculators, the Casio or Sharp approved models.
- 3. This is a CLOSED BOOK EXAM.
 Useful constants and equations have been annexed to the exam paper.
- 4. Any FIVE (5) of the SEVEN (7) questions constitute a complete exam paper. The first five questions as they appear in the answer book will be marked.
- 5. When answering questions, candidates must clearly indicate units for all parameters used or computed.

MARKING SCHEME

Questions	Marks			
1	(a) 5	(b) 5	(c) 10	
2	(a) 6	(b) 6	(c) i. 4	(c) ii. 4
3	(a) 10	(b) 7	(c) 3	
4	(a) 9	(b) 4	(c) 7	
5	(a) 5	(b) 10	(c) 5	
6 .	(a) 8	(b) 12		
7	(a) 8	(b) 8	(c) 4	

1. A face centered cubic (fcc) lattice and its primitive cell are show in Figure P1a and a lattice plane of this crystal is shown in Figure P1b.

Z 2 1 2 1 2 1 2 1 2 X

Figure P1a

Figure P1b

- 5 pts (a) Calculate the packing fraction for this cubic lattice. [Note: $V_{sphere} = \frac{4\pi r^3}{3}$]
- ^{5 pts} (b) Find the Miller indices for the plane shown in Figure P1b.
- 10 pts (c) Find the primitive translation vectors b_1 , b_2 and b_3 for the reciprocal lattice for the fcc lattice.

May 2013

2. The interaction between two inert gas atoms takes the form of the normalized potential $U(R)/\epsilon$ shown in Figure P2.

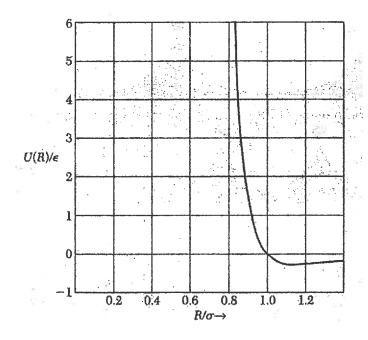


Figure P2

6 pts (a) What is the name of this potential?

6 pts (b) Briefly explain what the negative part of the curve signifies?

(c) Measurements done at very low temperature for hydrogen (H₂) gave the following parameter values

$$\epsilon = 40 \times 10^{-16} \text{ erg}$$
 $\sigma = 3 \text{ Å}$

Assuming that at this temperature the H_2 molecules are hard spheres in an fcc lattice structure:

i. Calculate the value of the interaction potential (in Joules) between H₂ molecules when they are 3.6 Å apart.

4 pts ii. Calculate the cohesive energy in kJ per mole of H₂.

3. Consider vibrations in a crystal with a monatomic basis where each atom has a mass M and a force constant C between nearest-neighbour lattice planes. Plane displacements are illustrated in Figure P3.

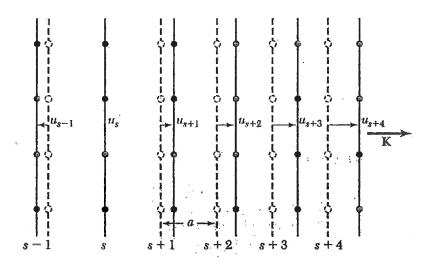


Figure P3

Assuming displacements of the form $u_s = u \exp(isKa)$ all having the time dependence $\exp(-i\omega t)$ and considering only nearest planes,

10 pts (a) Show that the dispersion relation $\omega(K)$ is given by $\omega = \sqrt{\left(\frac{4C}{M}\right)} \left| \sin\left(\frac{Ka}{2}\right) \right|$

⁷pts (b) Plot the dispersion relation for the *first Brillouin zone*.

^{3 pts} (c) What sort of waves are present at the the first Brillouin zone boundaries?

May 2013

4. Particles which behavior follows the Fermi-Dirac distribution are called *fermions*. The 3-dimensional Fermi surface of fermions is shown in Figure P4. Just like free electrons, the helium-3 (He³) atoms behave like fermions. He³ is composed of 3 atomic mass units: 2 protons and 1 neutron. The density of He³ near absolute zero temperature is 0.081 g/cm³.

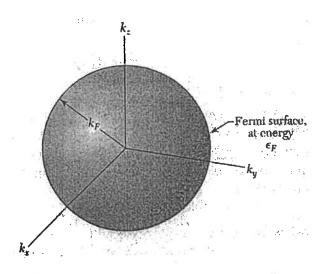


Figure P4

- ^{9 pts} (a) Show that He³ atoms have a Fermi energy \in_F of about 7 x 10⁻¹⁶ erg.
- 4 pts (b) What is the Fermi temperature T_F that corresponds to this Fermi energy?
- 7 pts (c) Assuming that the *chemical potential* is approximately equal to \in_F , what is the probability that an atom of He³ would occupy an energy level of $\in =20\in_F$ at T=45 °K?

		y of various allowed energy s filled with electrons.	bands for five case	s is shown in Fig	ure P5. The gre
	Energy				
	А	0 2	8	4	6
		<u>F</u> i	gure P5		
5 pts	` '	the five cases shown in Fig r, a metal, a semiconductor,		ether the type of	crystal is
10 pts	electron co measureme	that intrinsic silicon (Si) has neentration of intrinsic silicents on this semiconductor has and the effective mass rest.	on (Si) at room tem have shown that the	perature (T=300 effective mass o	°K) if f an
5 pts	between the	level of an intrinsic semicole valence and conduction be donors, briefly explain wh	ands. If this semico	nductor is now he	avily
	ne following ques	stions refer to magnetism pr	esent or induced in	crystal lattices.	हें का कर का
6. Th		5#		<i>paramagnetic</i> m	aterial.
6. Th	(a) Briefly expl	lain how a <i>diamagnetic</i> mat	erial differs from a	_	
		lain how a <i>diamagnetic</i> mat		terial having the	following
8 pts	(b) Calculate th		f a diamagnetic mat m ³	terial having the	following .

7. The diffusion constants D₀ and activation energies E for various lattice defects such as impurity atoms or vacancies are listed below.

Host crystal	Atom	D _o (cm ² /s)	· E · (eV)
Cu	Cu	0.20	2.04
Cu	Zn	0.34	1.98
Ag	Ag	J0.40	1.91
Ag	Cu	1.2	2.00
Ag	Au	0.26	1.98
Ag	Pb	0.22	1.65
Na	Na	0.24	0.45
U	U	0.002	1.20

Host crystal	Atom	D _o (cm ² /s)	E (eV)
Si	Al	8.0	3.47
Si	Ga	3.6	3.51
Si	In	16.0	3.90
Si .	As	0.32	3.56
Si	Sb	5.6	3.94
Si	Li	0.002	0.66
Si	Au	0.001	1.13
Ge	Ge	10.0	3.1

- 8 pts (a) Briefly explain how the presence of impurities such as arsenic (As) in pure silicon (Si) can actually be useful in solid state devices.
- (b) Sodium (Na) has a density of 0.971 g/cm³ and its atomic weight is 23 amu. If the energy to take an atom of Na from its normal lattice site to a lattice site at the surface of the crystal is 1.05 eV, calculate the concentration of defect vacancies present at a temperature of 300 °K.
- 4 pts (c) Determine at what rate aluminum (Al) atoms would diffuse into a lattice of pure silicon (Si) at a temperature of 1200 °K.

USEFUL EQUATIONS AND CONSTANTS

(1)
$$sin^2\theta = \frac{1}{2}(1 - \cos 2\theta)$$
 $cos\theta = \frac{1}{2}[\exp(i\theta) + \exp(-i\theta)]$

(2)
$$T = u_1 a_1 + u_2 a_2 + u_3 a_3$$

(3)
$$G = v_1b_1 + v_2b_2 + v_3b_3$$

(4)
$$p = r \times t = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} (x \ y \ z) = \begin{pmatrix} r_2 t_3 - r_3 t_2 \\ r_3 t_1 - r_1 t_3 \\ r_1 t_2 - r_2 t_1 \end{pmatrix} (x \ y \ z)$$
 where $r = r_1 x + r_2 y + r_3 z$ $t = t_1 x + t_2 y + t_3 z$

$$(5) \quad V_{min} = |a_1 \cdot a_2 \times a_3|$$

(6)
$$b_1 = 2\pi \frac{a_2 \times a_3}{a_1 \cdot a_2 \times a_3}$$
 $b_2 = 2\pi \frac{a_3 \times a_1}{a_1 \cdot a_2 \times a_3}$ $b_3 = 2\pi \frac{a_1 \times a_2}{a_1 \cdot a_2 \times a_3}$

(7)
$$2d \sin \theta = n\lambda$$
 $\Delta k = G$ $2k \cdot G = G^2$

(8)
$$U(R) = 4\epsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]$$

(9)
$$U_{tot} = -(2.15)(4N\varepsilon)$$

(10)
$$F_s = C(u_{s+1} - u_s) - C(u_{s-1} - u_s)$$

(11)
$$M \frac{d^2 u_s}{dt^2} = C(u_{s+1} - u_s) - C(u_{s-1} - u_s)$$

$$(12) \quad f(\in) = \frac{1}{\exp\left[\frac{\epsilon - \mu}{k_B T}\right] + 1}$$

$$(13) \quad \epsilon_F = \frac{\hbar}{2m} \left(\frac{3\pi^2 N}{V} \right)^{2/3}$$

(14)
$$np = 4 \left(\frac{k_B T}{2\pi\hbar^2}\right)^3 (m_e m_h)^{3/2} \exp\left(\frac{-E_g}{k_B T}\right)$$

(15)
$$n_i = p_i = 2\left(\frac{k_B T}{2\pi\hbar^2}\right)^{3/2} (m_e m_h)^{3/4} \exp\left(\frac{-E_g}{2k_B T}\right)$$

(16)
$$\mu = \frac{E_g}{2} + \frac{3}{4} k_B T \ln (m_h/m_e)$$

(17)
$$\chi = -\frac{\mu_o N Z e^2}{6m} \langle r^2 \rangle$$

$$(18) \quad \frac{n}{N-n} = exp\left(\frac{-E_V}{k_B T}\right)$$

$$(19) \quad D = D_o exp\left(\frac{-E}{k_B T}\right)$$

May	2013

Quantity	Symbol	Value	CGS	SI
Velocity of light	c vita	2.997925	10 ¹⁰ cm s ⁻¹	10 ⁸ m s ⁻¹
Proton charge	е	1.60219	- F	10 ⁻¹⁹ C
		4.80325	10 ⁻¹⁰ esu	
Planck's constant	h	6.62620	10 ⁻²⁷ erg s	10^{-34} J s
	$\hbar = h/2\pi$	1.05459	10 ⁻²⁷ erg s	10 ⁻³⁴ J s
Avogadro's number	N	$6.02217 \times 10^{23} \; \mathrm{mol^{-1}}$		_
Atomic mass unit	amu	1.66053	10 ⁻²⁴ g	10 ⁻²⁷ kg
Electron rest mass	m	9.10956	10 ⁻²⁸ g	10 ⁻³¹ kg
Proton rest mass	M_{p}	1.67261	10^{-24} g	10 ⁻²⁷ kg
Proton mass/electron mass	M_p/m	1836.1		_
Reciprocal fine structure constant hc/e ²	l/α	137.036		
Electron radius e²/mc²	T _e	2.81794	10 ⁻¹³ cm	10 ⁻¹⁵ m
Electron Compton wavelength h/mc		3.86159	10 ⁻¹¹ cm	10 ⁻¹⁸ m
Bohr radius ħ²/me²	<i>r</i> ₀	5.29177	10 ⁻⁹ cm	10 ⁻¹¹ m
Bohr magneton eh/2mc	μ_B	9.27410	10 ⁻²¹ erg G ⁻¹	10 ⁻²⁴ J T
Rydberg constant me ⁴ /2h ²	R _∞ or Ry	2.17991 13,6058 eV	10 ⁻¹¹ erg	10 ⁻¹⁸ J
l electron volt	eV	1.60219	10 ⁻¹² erg	10-18 J
	eV/h	$2.41797 \times 10^{14} \text{ Hz}$		3 3
	eV/hc	8.06546	10 ³ cm ⁻¹	10 ⁵ m ⁻¹
	eV/k _B	1.16048 × 101 K		
Boltzmann constant	k_B	1.38062	10 ⁻¹⁶ erg K ⁻¹	10 ⁻²³] K
Permittivity of free space	€0		1	$10^7/4\pi c^2$
Permeability of free space	μ_0		1 4π	$\times 10^{-7} N/A$