National Exams December 2014

04-Chem-A6, Process Dynamics and Control

3 hours duration

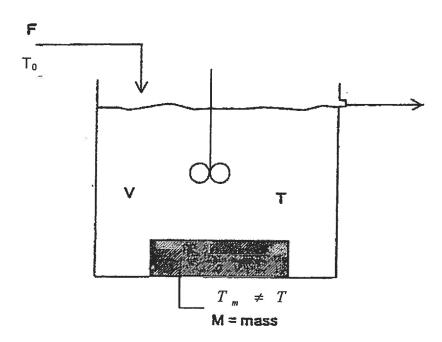
NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM.

 Any non-communicating calculator is permitted.
- 3. FIVE (5) questions constitute a complete exam paper.

 The first five questions as they appear in the answer book will be marked.
- 4. Each question is of equal value.
- 5. Most questions require an answer in essay format. Clarity and organization of the answer are important.

Page 1 of 7


PROBLEM #1 (20%)

The process in the figure involves a continuous flow stirred tank with a mass of solid material. The assumptions for the system are:

- 1) well mixed tank
- 2) physical properties constant Cv ≈ Cp,
- 3) V = constant, F = constant [vol/time],
- 4) the solid material contributes a significant portion of the energy storage, and the temperature is uniform throughout the solid.
- 5) the heat transfer from the liquid to the metal, is UA (T-T_m), $(T_m \neq T)$
- 6) heat losses are negligible, and
- 7) all variables are initially at steady state

10% a- Determine the fundamental model equations that relate the behavious of T(t) as $T_0(t)$ changes.

- 5% b- Derive the transfer function $\delta T(s)/\delta T_0(s)$.
- 5% c- Describe briefly how the results in steps a and b would change as $UA \rightarrow \infty$.

04-Chem-A6, Process Dynamics and Control

PROBLEM # 2 (20%)

Consider the following system of equations:

$$\frac{dx_1}{dt} = -2.4048x_1 + 7u$$

$$\frac{dx_2}{dt} = 0.8333x_1 - 2.2381x_2 - 1.117u$$

$$y = x_2$$

10% a-Find the transfer function Y/U

10% b-Solve for y in response to a unit step change in u.

PROBLEM #3 (20% total)

A process is described by the following transfer function:

$$G_p = \frac{10(0.5 - s)e^{-10s}}{100s + 1}$$

- (10%) (a) Design an IMC (Internal Model Controller) for this process. Show your design with a block diagram.
- (10%) (b) Assuming a perfect model of the process, compute the closed loop response for a unit step in set point if the desired closed loop time constant is equal to 5.

PROBLEM # 4 (20% total)

A process given by:

$$G_{p} = \frac{100}{s - 10}$$

is controlled by a proportional controller with gain K_c.

- (10%) (a) Using the Nyquist theorem test the closed loop stability for $K_c = 1$ and $K_c = 0.01$.
- (10%) (b) Using the Nyquist criterion, compute the limiting value of K_c for which the system is stable.

04-Chem-A6, Process Dynamics and Control

Problem #5 (20% total)

Consider a closed loop system composed of the following elements:

1 - a proportional controller with gain k_c ,

2 - a process transfer function G_p,

3 - a sensor transfer function H.

$$G_p = \frac{1}{(s+1)^3}$$

Find the maximum k_c for the following 2 cases:

$$(10\%)$$
 (a) $H = 1$

(10%) (b)
$$H = e^{-0.7s}$$

If iterations are required to solve an equation, show only the first 3 iterations (steps).

04-Chem-A6, Process Dynamics and Control

PROBLEM #6 (20% total)

For the equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + k \frac{\mathrm{d}y}{\mathrm{d}t} + 10y = 2x$$

- (10%) (a) Find the transfer function between the input x to the output y and put it in the standard gain-time constant form.
- (5%) (b) Discuss for which values of k is the open loop response for a unit step in x (i) stable, (ii) underdamped, and (iii) overdamped.
- (5%) (c) If the response is underdamped, compute expressions as a function of k for the time constant and the damping coefficient according to the standard form definitions.

PROBLEM #7 (20% total)

The dynamic response of the reactant concentration in a CSTR reactor, C_{A_0} , to a change in inlet concentration, C_{A_0} , has to be evaluated.

The reactor is operated with constant volume V and isothermal conditions. The density ρ is constant.

The reaction rate is: $r_A = k_I C_A^2$

The mass flowrate is F.

- (10%) (a) Derive a mathematical model to describe C_A(t) and compute steady state conditions for concentration.
- (10%) (b) Compute a transfer function $\delta C_A/\delta C_{A_0}$ (where δ indicates deviation variables) when the system is operated around the steady state computed in (a).

04-Chem-A6, Process Dynamics and Control

Problem #8 (20% total)

A process given by

$$G_p = \frac{e^{-0.1s}}{0.5s + 1}$$

is controlled by a proportional controller with gain k_{c} .

- (10%) (a) Plot qualitatively the Bode Plot for the open loop system (show slope values, corner frequencies and extreme amplitude and phase values).
- (10%) (b) Compute the gain k_c to obtain a gain margin of 1.7.