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National Exams May 2014
07-Elec-B1, Digital Signal Processing

3 hours duration

NOTES:

If doubt exists as to the interpretation of any question, the candidate is urged to submit with
the answer paper, a clear statement of any assumptions made.

This is an OPEN BOOK EXAM. Any non-communicating calculator is permitted.

_Five (5) questions constitute a complete paper. The first five questions as they appear in
your answer book will be marked.

All questions are of equal value.’

You can find a list of commonly used symbols, some trigonometric identities, Discrete-
Fourier Transform definitions and formulations, Discrete-Time Fourier Transform tables and
z-Transform tables at the end of this exam paper.
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1. Figure (1) depicts the pole-zero diagrams corresponding to the transfer functions of four
independent systems. Note: In all diagrams UC represents the unit circle. The region-of-
convergence of each system is indicated below the corresponding pole-zero diagram.
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Figure 1: Pole-zero diagrams of four different systems.

(a) For each system determine the following system characteristics:
e Type of system (FIR or IIR);
o Stability;
e Causality.

Explain and justify your answers. Answers without explanations will not receive any
credit. ‘

(b) For each system determine the whether the corresponding unit impulse response se-
quence h[n] is a double-sided, left-sided, right-sided, mixed or finite length sequence.
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2. Let z(t) be a real-valued analog signal applied to the input of the A/D which operates at the
sampling rate F, = 48 kHz. The input signal z(t) is corrupted by two strong real-valued
sinusoids with frequencies F and F3, such that 0 < Fy < F, < 24 kHz. Figure (2) displays
the magnitude spectrum of the 64-point DFT obtained from the 48 kHz sampled sequence
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Figure 2: Magnitude spectrum of 64-point DFT of z[n].

(a) From the magnitude spectrum shown in Figure (2) identify the frequencies 77 and F
of the two real-valued sinusoids.

(b) Design a causal FIR notch filter with real-valued coefficients which would remove
the unwanted sinusoids at frequencies F and F5. Determine the system function,
Hoten(2), of the filter.

(c) Sketch the pole-zero diagram of H.,.(2). Sketch a signal-flow/block diagram which
implements the notch filter described by H,,ozcx(z) using a minimum number of multi-
plications. Determine the number of additions/subtractions, multiplications and storage
requirements for this implementation.

(d) If the input to H .1 (2) has been sampled at 10 kHz, which frequencies will be blocked
by the filter?

(e) Convert the FIR filter H,, .4 (2) into an IIR filter for improved performance. The IR
filter should again remove the d.c. component and the sinusoids at frequencies F; and
Fy , while reducing the bandwidth of the notches in the magnitude response of the
filter. Determine the transfer function of this IR filter and provide a signal-flow/block
diagram representation.
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3. Letx = {z[0],...,z[N — 1]} be an N-element sequence. Let X = {X[0],..., X[N — 1]}
be the corresponding N-point DFT of x such that
N-1

X[kl => zWg,  k=0,1,...,N-1 (1)

n=0

where Wy = e 72"/N, An engineer wants to recover x by applying the inverse transform
IDFT to X. However, as a result of carelessness the engineer applies DFT to X again and
generates the sequence y = {y[0],...,y[N —1]}:

N-1
y[m]zZX[k]W"‘k, m=0,1,...,N -1, 2
k=0

Your task is to help the engineer by exploring if it is still possible to recover x from y.

(a) If x = {0,1,—1, 2}, determine y. Does it appear that x can be recovered from y?

(b) Prove that x can be recovered from y for the general case when x is an arbitrary N-
element sequence. If X [k] and y[m] are given by Equations (1) and (2), respectively,
determine y in terms of x. Hint: Consider using the relation:

N-1 '

1 n— 1, n={l)n;

TP ‘)“={ (i )
k=0

0, otherwise.

to simplify the expressions, where the notation ( . ) denotes the modulo operation:
(1)~ = modulo N ®

(c) Using the relation you derived in part (b), show how the elements of y are related to
the elements of x = {z[0], z[1], ..., z[15]}.

(d) If the DFT operations used in transforming x into X, and X into y are implemented
directly using Equations (1) and (2), respectively, determine the total number of real
multiplications needed to generate y from x. Also determine the total number of real
multiplications needed if the DFTs are implemented using a radix-2 FFT algorithm.
Assume N = 2? with g € Z+.
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4. Consider the discrete-time, linear, time-invariant system S described by the difference equa-

tion:
y[n] = z[n] — z[n — 1]. (5)

Let the input to the system be the 3-sample sequence
xln| = 1, 0, —1
= 1 ) ©
n=0
(a) Determine the unit impulse response sequence h{n] that describes the system S.

(b) Determine the system output y[n] when z[n] is the input using the iterative solution of
the difference equation given in Equation (5).

(c) Determine y[n] using linear convolution.
(d) Determine y[n] using circular convolution (implemented in time domain).

(e) Determine y[n] using DFT/IDFT operations.
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5. Let S be a discrete-time, linear, time-invariant system which is known to be causal and
stable. The system & is described by the transfer function H(z) with the following charac-
teristics:

e System Zeros: z; = 0 and zp = —1;
e System Poles: p; = 0.5 and p; = —0.5;
e H(1) =d.c. gain = 8/3.

(a) Determine the transfer function H (z) and its region-of-convergence.
(b) Determine the difference equation that describes the system.

(c) Determine the unit impuise response sequence x[n|.

(d) Let z[n] = (3)"u[n] be the input to the system where u[n] is the unit step sequence.
The initial conditions for the system are y[—1] = 0 and y[—2] = 8. Determine the total
system response y[n]. You may use any method of your choice.

(e) Sketch a canonic realization of the system that uses minimum number of delay ele-
ments. Determine the number of additions, multiplicatiors and delay elements used by
your realization.
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6. Let S be a discrete-time, linear, time-invariant system which is known to be causal and
stable. The system S is described by the difference equation:

yln] = (%)y[n — 1]+ an) + (%)x[n —1]. Q)

(a) Determine the impulse (unit sample) response sequence h[n].
(b) Determine the frequency response function H (e*).

(c) Determine the response of the system to the input z[n] = cos (Zn+ ).
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7. In this question we investigate how we can use the DFT algorithm to calculate the inverse-
DFT (IDFT). The box labeled “N-point DFT” shown in Figure (3), operates on the input
sequence {z[n]}'=} and generates the N-point DFT sequence { X [k]}2'_}, where Re[z] and

Im[z] refer to the real and imaginary parts of z, respectively.

Re{x[n]} —— — Re{XI[kI}

N—point
DFT

Im{x[n]} ——

Im{X[k]}

Figure 3: Representation of the N-point DFT block.

(a) Determine the modifications that are external to the “box”, such that when the input
to the modified system is {X [k]}2 -} then the output of the modified system will be

{z[n]}nss-
(b) A second approach to the IDFT computation using a DFT algorithm is illustrated in
Figure (4).

Re{X[k]}
N-point
> < DFT
Im{X[k]}

I/N
' Re{x[n]}

Im{x[n]}

/N
Figure 4: Computing the IDFT from DFT using Equation (9).

Define a length-N sequence {g[n]}) as

Relq[n]] = ImX[k] ]m, Tmlg[n]] = ReX[K] ]M )
with Q[k] denoting its N-point DFT. Demonstrate that this.approach will indeed allow
you to calculate the IDFT by showing that

Relofr]] = - ImQ[K|_,  Imfofr]] = —ReQlH]| ©

(c) Let X[k] = {1,1+ 24,1,1 — 25} be the 4-point DFT of the time-domain sequence
z[n]. Determine z[n] by evaluating the IDFT of X [k] using the approach delineated in
part (b). (No credit will be given if z[n] is determined using an approach different than
the one described in part (b).)
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List of Commonly Used Symbols:

a(t), 5(2), y(t), .
a[n], z[n], y[n], . . .
A(z)
h[n]

continuous-time signals.

discrete-time sequences.

z-Transform of the discrete-time sequence a[n]
impulse response sequence of a discrete-time system.

transfer function of a discrete-time linear, time-invariant system
represented by the impulse response sequence h[n).

angular frequency.

frequency such that Q = 27 F.

digital angular frequency.

digital frequency such thatw = 27 f. -

Discrete-Time Fourier Transform of z[n] defined as
X(w) = 3, alnje5.

Continuous-Time Fourier Transform of z(¢) defined as
X(Q) = [ a(t)e%dt.
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Trigonometric Identities:

sin{a + 8) = sin  cos 8 &= cos arsin 3 sin o sin 8 = 1 cos(a — 8) —  cos(a + B)
cos(ax &+ ) = cosacos 3 F sinasin 3 cosa cos f = 1 cos(a + B) + 3 cos(a — B)
sina cos B = &sin(a+ B) + & sin(a — )

Euler’s Identity:

e’ =cosf + j sin@

Discrete Fourier Transform: The N-point DFT of a N-sample sequence s[n| is defined as:

N-1
Sl => spW§,  k=0,1,...,N-1

n==0

The sequence s[n] can be recovered from its DFT coefficients using the N-point IDFT:

N-1
S[n]=%ZS[k]Wﬁkn, n:O,l,...,N_;l.
k=0

where Wy = e~32*/N_ The DFT/IDFT relations can also be expressed in matrix form

S[0] s[0] s[0] T s
: =Wy . ) : = W]—\}l

SV —1] (N —1] AN -1 | | sv-1

where the transformation matrices for N = 2, 3,4 are

i i
- T1 1 o 11 1
Wz—_'l —1] W T21 —1}
(1 1 1 1F1 1 1
Wo= |1 =35 —3+%5 | Wit=g|1 —5+%5 34
|1 3 i (13- i+
1 1 1 1 1 1 1 1
1 -5 -1 3§ 11 5 -1 =5
Wi=1, 1 1 We' = 1 -1 1 —1
1§ -1 —j 1 <5 =1 +j
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te-Time Fourier Transform
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Table 2: Discrete-Time Fourier Transform Theorems

Sequence Fourier Transform
x[n] X (¢4
1. ax{n] +byln] aX (e/) + bY(el?)
2. x[n —nyg] (ny an integer) e—Jora X (eJ@)
3. el@onx[n} X (efl—@aly
4. x[-n] X (e~
X*¥(e!®y if x[n] veal.
IX (e/©
5. nx[n] j(__(e_]
dw
6. x[n] % v[n] X (ef)Y (e @)
1 i [l Teo. ) T
7. x[n]¥[n] — X (¥ (e Oy
27 J_x

Parseval's theorem:

&0 1 .
: . 2_ 4 Jon 2
8. Z |xr]| =5 f_ i X (/) [2dew

B=—00

oo 1 bid R .
9, E xn]y*in] = 5—7;_/ X W ¥ !V w
= -t

=00
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Table 3: Discrete-Time Fourier Transform Pairs
Sequence Fourier Transform
1. f.‘):l_ll] L
2. 8[n — ny) e—Jjwng
o

i1 (—o0 < 1 < 00) Z 28w + 2k)

=0
4. aufn] (o] < D -—£——

| —ue—iw

| oo
5. uln] m"‘lz w8{w + 2ak)
k=—n0
1
6. (n+ Va"un] (a| < 1) —_—
Ya*ufn]  (lal 1 —aeiay?
! sin 1 '
7. -l-——-,—uff—(—-n--*—_——)u[n] {rl =1 ! - -
Sihap 1=2rcoswpe=J9 4 rie=)-0
. Sihawen oy _ 1L el < we,
N T Xle ’_{0~ we < o] 7
9. x[n] = 1. O0< ll- _S Af sin[m._(ﬂ"l + ‘-I‘]/‘zle—jcw\'flz
0, otherwise sin(w/2)
_ 00

10, eJoon Y 2wl — wg + 2mk)

h=—0x

m . 3

L1, cos{wpn + ¢) Z [ne-’éa(w —wy+27k) + sre""’ba(cu + wq + 2rk)]

b=—00
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Table 4: Some Common z-Transform Pairs

Sequence ' Iransform ROC
1. 8[n] 1 Allz
1
2. l([ﬂ] —I-_“_—l- I:l > 1
" 1
3. —t[—n—1] T |z < 1
4. 8[n —m] g = All z except 0 (if i > 0)s
. pLO(
5. a’ufn} ; 'aq_] izl > la|
L £y
f, —-a"u[-—~n — 1] T———C-I-::T ICI < IUI
1 a?_l
7. na”uln] m izl _> la]
] ozt :
S. —na"u[—n — 1] m 1z} < la|
o | | — cos(ep)z™! .
9. cos{wgn)ulu] . 2c¢1<(o)o()t?;" e [gf > 1
. . ’_] )
10. sin{wy)uln) .1 2:;2;23_‘:_[ = Iz} =1
. T E 4
1 — rcos vo—1
1. 7" cos{wgm)u[n] =5, cu:(‘:fj;)('(f‘)i- ) lz| > r
AL by, 9 =4
i’ -1
rsin
12, r'sin(wgn)uln] T3 cos('ci?)ﬂji s lz] > r
e [@" O<n<N—-1. l—a¥z7% :
13. [(). atherwise 1 —az™! Izl > 0

Sy e

[ ———
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Table 5: Some z-Transform Properties
Sequence Transform ROC

x[n] X(2) Ry

xfn] X1(2) Ry

xa[n] Xa2(2) Ry,

axin] + bxa[n]  aXi(z) + bXa(z) Contains Ry, N Ry,

x[n — ng] X (z7) R, except for the possible
addition or deletion of
the origin or co

zpxln] X (z/z0) |zo] Ry

Ix (=
nxn] _cE )i(”) Rx
Y] X+ R,
1
Refx[n]} 5[X(@+X*&"]  Contains Ry
1
Imi{x[nl} ?[X(Z) - X*z")] Contains R,
)
x#*[=n] X¥#(1/z%) 1/Ry

x1(n] % x2[n]

X(2)X2(2)

Contains Ry, N Ry,
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Marking Scheme

Question 1: (a) 10, (b) 10 marks.

Question 2: (a) 3, (b) 4, (c) 5, (d) 4, (e) 4 marks.
Question 3: (a) 5, (b) 5, (c) 5, (d) 5 marks.
Question 4: (a) 2, (b) 4, (¢) 4, (d) 4, (e) 6 marks.
Question 5: (a) 3, (b) 3, (c) 4, (d) 7, (e) 3 marks.
Question 6: (a) 7, (b) 8, (c) 5 marks.

Question 7: (a) 6, (b) 9, (c) 5 marks.



