National Exams May 2014

07-Elec-B1, Digital Signal Processing

3 hours duration

NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. This is an OPEN BOOK EXAM. Any non-communicating calculator is permitted.
- 3. Five (5) questions constitute a complete paper. The first five questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.
- 5. You can find a list of commonly used symbols, some trigonometric identities, Discrete-Fourier Transform definitions and formulations, Discrete-Time Fourier Transform tables and z-Transform tables at the end of this exam paper.

1. Figure (1) depicts the pole-zero diagrams corresponding to the transfer functions of four independent systems. Note: In all diagrams UC represents the unit circle. The region-of-convergence of each system is indicated below the corresponding pole-zero diagram.

ROC =
$$\{z : \text{entire z-plane except}$$

 $z = 0 \text{ and } z = \infty\}$

$$ROC = \{z : |p_2| < |z| < |p_1|\}$$

Figure 1: Pole-zero diagrams of four different systems.

- (a) For each system determine the following system characteristics:
 - Type of system (FIR or IIR);
 - Stability;
 - Causality.

Explain and justify your answers. Answers without explanations will not receive any credit.

(b) For each system determine the whether the corresponding unit impulse response sequence h[n] is a double-sided, left-sided, right-sided, mixed or finite length sequence.

2. Let x(t) be a real-valued analog signal applied to the input of the A/D which operates at the sampling rate $F_s = 48$ kHz. The input signal x(t) is corrupted by two strong real-valued sinusoids with frequencies F_1 and F_2 , such that $0 < F_1 < F_2 < 24$ kHz. Figure (2) displays the magnitude spectrum of the 64-point DFT obtained from the 48 kHz sampled sequence x[n].

Figure 2: Magnitude spectrum of 64-point DFT of x[n].

- (a) From the magnitude spectrum shown in Figure (2) identify the frequencies F_1 and F_2 of the two real-valued sinusoids.
- (b) Design a causal FIR notch filter with real-valued coefficients which would remove the unwanted sinusoids at frequencies F_1 and F_2 . Determine the system function, $H_{notch}(z)$, of the filter.
- (c) Sketch the pole-zero diagram of $H_{notch}(z)$. Sketch a signal-flow/block diagram which implements the notch filter described by $H_{notch}(z)$ using a minimum number of multiplications. Determine the number of additions/subtractions, multiplications and storage requirements for this implementation.
- (d) If the input to $H_{notch}(z)$ has been sampled at 10 kHz, which frequencies will be blocked by the filter?
- (e) Convert the FIR filter $H_{notch}(z)$ into an IIR filter for improved performance. The IIR filter should again remove the d.c. component and the sinusoids at frequencies F_1 and F_2 , while reducing the bandwidth of the notches in the magnitude response of the filter. Determine the transfer function of this IIR filter and provide a signal-flow/block diagram representation.

3. Let $\mathbf{x} = \{x[0], \dots, x[N-1]\}$ be an N-element sequence. Let $\mathbf{X} = \{X[0], \dots, X[N-1]\}$ be the corresponding N-point DFT of \mathbf{x} such that

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \qquad k = 0, 1, \dots, N-1;$$
 (1)

where $W_N = e^{-j2\pi/N}$. An engineer wants to recover x by applying the inverse transform IDFT to X. However, as a result of carelessness the engineer applies DFT to X again and generates the sequence $y = \{y[0], \dots, y[N-1]\}$:

$$y[m] = \sum_{k=0}^{N-1} X[k] W_N^{mk}, \qquad m = 0, 1, \dots, N-1;$$
 (2)

Your task is to help the engineer by exploring if it is still possible to recover x from y.

- (a) If $x = \{0, 1, -1, 2\}$, determine y. Does it appear that x can be recovered from y?
- (b) Prove that x can be recovered from y for the general case when x is an arbitrary N-element sequence. If X[k] and y[m] are given by Equations (1) and (2), respectively, determine y in terms of x. Hint: Consider using the relation:

$$\frac{1}{N} \sum_{k=0}^{N-1} W_N^{(n-l)k} = \begin{cases} 1, & n = \langle l \rangle_N; \\ 0, & otherwise. \end{cases}$$
 (3)

to simplify the expressions, where the notation (.) denotes the modulo operation:

$$\langle l \rangle_N = l \text{ modulo } N$$
 (4)

- (c) Using the relation you derived in part (b), show how the elements of y are related to the elements of $x = \{x[0], x[1], \dots, x[15]\}.$
- (d) If the DFT operations used in transforming x into X, and X into y are implemented directly using Equations (1) and (2), respectively, determine the total number of real multiplications needed to generate y from x. Also determine the total number of real multiplications needed if the DFTs are implemented using a radix-2 FFT algorithm. Assume N = 2^q with q ∈ Z⁺.

4. Consider the discrete-time, linear, time-invariant system $\mathcal S$ described by the difference equation:

$$y[n] = x[n] - x[n-1].$$
 (5)

Let the input to the system be the 3-sample sequence

$$x[n] = \{ \begin{array}{cc} 1, & 0, & -1 \end{array} \}$$
 (6)

- (a) Determine the unit impulse response sequence h[n] that describes the system S.
- (b) Determine the system output y[n] when x[n] is the input using the **iterative** solution of the difference equation given in Equation (5).
- (c) Determine y[n] using linear convolution.
- (d) Determine y[n] using circular convolution (implemented in time domain).
- (e) Determine y[n] using **DFT/IDFT** operations.

- 5. Let S be a discrete-time, linear, time-invariant system which is known to be **causal** and **stable**. The system S is described by the transfer function H(z) with the following characteristics:
 - System Zeros: $z_1 = 0$ and $z_2 = -1$;
 - System Poles: $p_1 = 0.5$ and $p_2 = -0.5$;
 - H(1) = d.c. gain = 8/3.
 - (a) Determine the transfer function H(z) and its region-of-convergence.
 - (b) Determine the difference equation that describes the system.
 - (c) Determine the unit impulse response sequence h[n].
 - (d) Let $x[n] = (\frac{1}{3})^n u[n]$ be the input to the system where u[n] is the unit step sequence. The initial conditions for the system are y[-1] = 0 and y[-2] = 8. Determine the total system response y[n]. You may use any method of your choice.
 - (e) Sketch a canonic realization of the system that uses minimum number of delay elements. Determine the number of additions, multiplications and delay elements used by your realization.

6. Let S be a discrete-time, linear, time-invariant system which is known to be causal and stable. The system S is described by the difference equation:

$$y[n] = \left(\frac{1}{2}\right)y[n-1] + x[n] + \left(\frac{1}{2}\right)x[n-1]. \tag{7}$$

- (a) Determine the impulse (unit sample) response sequence h[n].
- (b) Determine the frequency response function $H(e^{j\omega})$.
- (c) Determine the response of the system to the input $x[n] = \cos(\frac{\pi}{2}n + \frac{\pi}{4})$.

7. In this question we investigate how we can use the DFT algorithm to calculate the inverse-DFT (IDFT). The box labeled "N-point DFT" shown in Figure (3), operates on the input sequence $\{x[n]\}_{n=0}^{N-1}$ and generates the N-point DFT sequence $\{X[k]\}_{k=0}^{N-1}$, where $\mathbf{Re}[z]$ and $\mathbf{Im}[z]$ refer to the *real* and *imaginary* parts of z, respectively.

Figure 3: Representation of the N-point DFT block.

- (a) Determine the modifications that are **external** to the "box", such that when the input to the modified system is $\{X[k]\}_{k=0}^{N-1}$ then the output of the modified system will be $\{x[n]\}_{n=0}^{N-1}$.
- (b) A second approach to the IDFT computation using a DFT algorithm is illustrated in Figure (4).

Figure 4: Computing the IDFT from DFT using Equation (9).

Define a length-N sequence $\{q[n]\}_{n=0}^{N-1}$ as

$$\operatorname{Re}[q[n]] = \operatorname{Im}X[k] \Big|_{k=n}, \quad \operatorname{Im}[q[n]] = \operatorname{Re}X[k] \Big|_{k=n}. \tag{8}$$

with Q[k] denoting its N-point DFT. Demonstrate that this approach will indeed allow you to calculate the IDFT by showing that

$$\operatorname{Re}[x[n]] = \frac{1}{N} \operatorname{Im} Q[k] \Big|_{k=n}, \qquad \operatorname{Im}[x[n]] = \frac{1}{N} \operatorname{Re} Q[k] \Big|_{k=n}. \tag{9}$$

(c) Let $X[k] = \{1, 1+2j, 1, 1-2j\}$ be the 4-point DFT of the time-domain sequence x[n]. Determine x[n] by evaluating the IDFT of X[k] using the approach delineated in part (b). (No credit will be given if x[n] is determined using an approach different than the one described in part (b).)

List of Commonly Used Symbols:

$a(t), x(t), y(t), \dots$	continuous-time signals.	
$a[n], x[n], y[n], \dots$	discrete-time sequences.	
A(z)	z-Transform of the discrete-time sequence $a[n]$	
h[n]	impulse response sequence of a discrete-time system.	
H(z)	transfer function of a discrete-time linear, time-invariant system represented by the impulse response sequence $h[n]$.	
Ω	angular frequency.	
F	frequency such that $\Omega=2\pi F$.	
ω	digital angular frequency.	
f	digital frequency such that $\omega=2\pi f$.	
$X(\omega)$	Discrete-Time Fourier Transform of $x[n]$ defined as $X(\omega) = \sum_n x[n]e^{-j\omega n}$.	
$X(\Omega)$	Continuous-Time Fourier Transform of $x(t)$ defined as $X(\Omega)=\int_{-\infty}^{\infty}x(t)e^{-j\Omega t}dt.$	

Trigonometric Identities:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \qquad \sin \alpha \sin \beta = \frac{1}{2}\cos(\alpha - \beta) - \frac{1}{2}\cos(\alpha + \beta)$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \qquad \cos \alpha \cos \beta = \frac{1}{2}\cos(\alpha + \beta) + \frac{1}{2}\cos(\alpha - \beta)$$
$$\sin \alpha \cos \beta = \frac{1}{2}\sin(\alpha + \beta) + \frac{1}{2}\sin(\alpha - \beta)$$

Euler's Identity:

$$e^{j\theta} = \cos\theta + j \sin\theta$$

Discrete Fourier Transform: The N-point DFT of a N-sample sequence s[n] is defined as:

$$S[k] = \sum_{n=0}^{N-1} s[n] W_N^{kn}, \qquad k = 0, 1, \dots, N-1.$$

The sequence s[n] can be recovered from its DFT coefficients using the N-point IDFT:

$$s[n] = \frac{1}{N} \sum_{k=0}^{N-1} S[k] W_N^{-kn}, \qquad n = 0, 1, \dots, N-1.$$

where $W_N = e^{-j2\pi/N}$. The DFT/IDFT relations can also be expressed in matrix form

$$\begin{bmatrix} S[0] \\ \vdots \\ S[N-1] \end{bmatrix} = \mathbf{W}_N \begin{bmatrix} s[0] \\ \vdots \\ s[N-1] \end{bmatrix} \qquad \begin{bmatrix} s[0] \\ \vdots \\ s[N-1] \end{bmatrix} = \mathbf{W}_N^{-1} \begin{bmatrix} S[0] \\ \vdots \\ S[N-1] \end{bmatrix}$$

where the transformation matrices for N = 2, 3, 4 are

$$\mathbf{W}_{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \mathbf{W}_{2}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$\mathbf{W}_{3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -\frac{1}{2} - \frac{\sqrt{3}}{2}j & -\frac{1}{2} + \frac{\sqrt{3}}{2}j \\ 1 & -\frac{1}{2} + \frac{\sqrt{3}}{2}j & -\frac{1}{2} - \frac{\sqrt{3}}{2}j \end{bmatrix} \qquad \mathbf{W}_{3}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -\frac{1}{2} + \frac{\sqrt{3}}{2}j & -\frac{1}{2} - \frac{\sqrt{3}}{2}j \\ 1 & -\frac{1}{2} - \frac{\sqrt{3}}{2}j & -\frac{1}{2} + \frac{\sqrt{3}}{2}j \end{bmatrix}$$

$$\mathbf{W}_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \\ 1 & -j & -1 & +j \end{bmatrix}$$

$$\mathbf{W}_{4}^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -j & -1 & +j \end{bmatrix}$$

Table 1: Symmetry Properties of the Discrete-Time Fourier Transform

Sequence	Fourier Transform
x[n]	$X(e^{j\omega})$
$1. x^*[n]$	$X^{*}(e^{-j\omega})$
2. $x^*[-n]$	$X^*(e^{j\phi})$
3. $\Re\{x[n]\}$	$X_c(e^{j\omega})$ (conjugate-symmetric part of $X(e^{j\omega})$)
4. $jIm\{x[n]\}$	$X_{\alpha}(e^{j\omega})$ (conjugate-antisymmetric part of $X\left(e^{j\omega}\right)$)
5. $x_{\epsilon}[n]$ (conjugate-symmetric part of $x[n]$)	$X_R(e^{j\omega}) = \mathcal{R}e\{X(e^{j\omega})\}$
6. $x_o[n]$ (conjugate-antisymmetric part of $x[n]$)	$jX_I(e^{j\omega}) = j\mathcal{I}m(X(e^{j\omega}))$
The following pr	The following properties apply only when $x[n]$ is real:
7. Any real $x[n]$	$X(e^{j\omega}) = X^*(e^{-j\omega})$ (Fourier transform is conjugate symmetric)
8. Any real $x[n]$	$X_R(e^{j\omega}) = X_R(e^{-j\omega})$ (real part is even)
9. Any real $x[n]$	$X_I(e^{j\omega}) = -X_I(e^{-j\omega})$ (imaginary part is odd)
10. Any real $x[n]$	$ X(e^{j\omega}) = X(e^{-j\omega}) $ (magnitude is even)
11. Any real $x[n]$	$\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (phase is odd)
12. $x_c[n]$ (even part of $x[n]$)	$X_R(e^{j\omega})$
13. $x_o[n]$ (odd part of $x[n]$)	$jX_I(e^{j\omega})$

Table 2: Discrete-Time Fourier Transform Theorems

Sequence	Fourier Transform
x[n]	$X(e^{j\omega})$
y[n]	$Y(e^{j\omega})$
$1. \ ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d} X(e^{j\omega})$
3. $e^{j\omega_0n}x[n]$	$X(e^{j(\omega-\omega_0)})$
4. x[-n]	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.
5. $nx[n]$	$j\frac{dX\left(e^{j\omega}\right)}{d\omega}$
6. $x[n] * y[n]$	$X(e^{j\omega})Y(e^{j\omega})$
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$
Parseval's theorem:	8
8. $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$	**
9. $\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$	à

Table 3: Discrete-Time Fourier Transform Pairs

Sequence	Fourier Transform
1. δ[n]	L
$2. \ \delta[n-n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n] (a < 1)$	$\frac{1}{1-ue^{-j\omega}}$
5. $u[n]$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^nu[n]$ $(a <1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
$8. \frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_C, \\ 0, & \omega_C < \omega \le \pi \end{cases}$
$9. \ x[n] = \begin{cases} 1. & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k) \right]$

Table 4: Some Common z-Transform Pairs

Sequence	Transform	ROC
1. δ[n]	1	All z
$2. \ u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$)
5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a
$6a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
11. $r^n \cos(\omega_0 n)u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
12. $r^u \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$		z > 0

 Table 5: Some z-Transform Properties

Sequence	Transform	ROC
x[n]	X(z)	R_X
$x_1[n]$	$X_1(z)$	R_{x_1}
$x_2[n]$	$X_2(z)$	R_{x_2}
$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
nx[n]	$-z\frac{dX(z)}{dz}$ $X^*(z^*)$	R_x
$x^*[n]$	$X^*(z^*)^{\mathcal{U}^{\mathcal{Z}}}$	R_{x}
$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Contains R_X
$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
$x^*[-n]$	$X^*(1/z^*)$	$1/R_x$
$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

Marking Scheme

Question 1: (a) 10, (b) 10 marks.

Question 2: (a) 3, (b) 4, (c) 5, (d) 4, (e) 4 marks.

Question 3: (a) 5, (b) 5, (c) 5, (d) 5 marks.

Question 4: (a) 2, (b) 4, (c) 4, (d) 4, (e) 6 marks.

Question 5: (a) 3, (b) 3, (c) 4, (d) 7, (e) 3 marks.

Question 6: (a) 7, (b) 8, (c) 5 marks.

Question 7: (a) 6, (b) 9, (c) 5 marks.