National Exams May 2015

07-Elec-A5, Electronics

3 hours duration

Notes:

- 1. If any doubt exists as to the interpretation of any question, the candidate is urged to submit, within their answer, a clear statement of any assumptions made.
- 2. This is a **CLOSED BOOK EXAM**.

 Any non-communicating calculator is permitted.
- 3. Answer all **FIVE** (5) questions.
- 4. All questions are worth 20 marks each.
- 5. Please start each question on a new page and clearly identify the question number and part number, e.g. Q4(a).
- 6. In schematics, ground and chassis may be assumed to be common, unless specifically stated otherwise.
- 7. Unless otherwise specified, assume that Op-Amps are ideal and that supply voltages are ±15V.
- 8. If questions require an answer in essay format, clarity and organization of the answer are important. Provide block diagrams and circuit schematics whenever necessary.

QUESTION (1)

An op amp with a slew rate of 1 V/ μ s and a unity-gain bandwidth, f_t of 1 MHz is connected in the unity-gain follower configuration.

a) What is the largest possible input voltage step for which the output voltage waveform can still produce an exponentially rise and fall waveform? (8 points)

- b) For this input voltage, find the 10% to 90% rise time. (6 points)
- c) If the input step is 10 times larger than the voltage that you have found in part (a), find the 10% to 90% rise time. (6 points)

Given:

Supply Voltage = $\pm 10 \text{ V}$

Useful Formulae:

$$\frac{V_{OUT}}{V_{IN}} = \frac{1}{1 + s/\omega_t}, \quad v_{OUT}(t) = V\left(1 - e^{-\omega_t t}\right)$$

QUESTION (2)

In the following circuit, the input voltage v_{IN} is a 1 kHz, ± 10 V triangular source. Provide an accurate sketch of the voltage waveforms v_1 and v_2 as a function of time. The diode D_1 is ideal with a 0.7V forward drop. (20 points)

Given:

$$R_1 = 1 k\Omega$$

$$R_2 = 1.2 \text{ k}\Omega$$

$$R_3 = 4.7 \text{ k}\Omega$$

$$R_4 = 11 \text{ k}\Omega$$

$$R_5 = 2 k\Omega$$

QUESTION (3)

The op amp is in this circuit can be considered as ideal. It is power by a ± 10 V supply and naturally the output will be limited to these levels. If the input is a ± 10 V triangular wave at 1 kHz, provide accurate sketches of the voltage waveforms ν_1 and ν_2 as a function of time. (20 points)

$$R_1 = 10 \text{ k}\Omega$$

$$R_2 = 100 \text{ k}\Omega$$

$$R_3 = 10 \text{ k}\Omega$$

$$R_4 = 10 \text{ k}\Omega$$

Elec-A5, Electronics

QUESTION (4)

In the following questions, all BJT transistors have $\beta = 50$, $V_{BE,on}$ or $V_{EB,on} = 0.6V$, $V_{CE,sat}$ or $V_{EC,sat} = 0.3V$ and $V_A = \infty$. Solve for the required voltages. (20 points)

(d)
$$+5V$$
 (4 points) $2 k\Omega$ $V_C = ?$ $1 k\Omega$ $-5V$

QUESTION (5)

Consider the common source amplifier circuit on the right. Determine the values for all the resistors to provide the following specifications: (20 points)

$$R_{in}$$
 = 50 k Ω
 R_{out} = 6 k Ω
 I_{bias} = 0.5 mA

Given:

$$R_{source} = 600 \Omega$$

 $V_{DD} = 10 \text{ V}$
 $V_{TH} = 1 \text{ V}$ $\lambda = 0 \text{ V}^-$
 $\mu_n C_{ox} (W/L) = 1 \text{ mA/V}^2$

Useful formulae: for n-channel MOSFET

$$i_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(v_{GS} - V_{TH}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
 triode region

$$i_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_{TH})^2 (1 + \lambda v_{DS})$$
 saturation region

