NATIONAL EXAMS 07-Elec-B2 Advanced Control Systems – May 2016

3 hours duration

NOTES:

- 1. If a doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper, a clear statement of any assumptions made.
- 2. Candidates may use one of two calculators, a Casio or a Sharp. This is a closed-book examination. Tables of Laplace and z-transforms are attached.
- 3. Any four questions constitute a complete paper. Only the first four questions as they appear in your answer book will be marked.
- 4. All questions are of equal value.

07-Elec-B2 Advanced Control Systems - May 2016

- 1. Consider the control system below with $P(s) = \frac{6(1-s)}{s(2+s)(1+s)}$ and C(s) = K.
- (a) The value of K is increased from zero to a value of K_{max} at which the system exhibits sustained oscillation. What is the value of K_{max} and what is the oscillation frequency?

- (b) For $K = K_{max}/2$ determine the phase margin.
- Define the tracking error, e(t) = r(t) y(t). Determine the steady state tracking error when r(t) is a ramp with unit slope and d(t) = 1.
- (d) Determine the steady state tracking error when d(t) = 0, and $r(t) = 4 \sin t$.
- 2. Consider the system, $P(s) = \frac{3(s+\alpha)}{s(s+4)^2}$.
- (a) Find a state space model for the system.
- (b) Justify the conditions under which the system controllable? observable?
- (c) The system input and output are uniformly sampled with a sample period of *h* and the discrete input is applied to a zero order hold device. Determine the poles of the sampled data system as a function of *h*. Detailed calculations are not necessary.
- 3. Consider the system,

$$\dot{x}(t) = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & -1 \\ 0 & 1 & 0 \end{bmatrix} x + B \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$$

Design a controller of the form, u(t) = Lr(t) - Kx(t) such that the closed loop poles are at s = -5, $-3 \pm j$ and the DC gain, that relates a constant value of y to a constant value of r, is unity.

07-Elee-B2 Advanced Control Systems - May 2016

4. Consider the sampled data system shown on the right. The input to the ZOH, the set-point, r, and the output, y, are uniformly sampled with a sample period of h. C(z) and P(s) are given by,

- (a) Determine C(z), i.e., k_0 and k_1 , such that the closed loop poles are all located at z = 0.
- (b) Determine the corresponding discrete closed loop transfer function, T(z), that relates Y(z) to R(z).
- (c) Sketch the associated unit step response at y(t), being careful to show the intersample behavior.
- 5. An experiment is conducted on a continuous time system, P, whose output is uniformly sampled with sample period, h = 1 second. The discrete input, u(kh), is applied to a zero order hold device which drives the input of P. Measurements for u(kh) and y(kh) appear in the Table. Assume that P is modeled by $P(s) = \frac{Ke^{-sT}}{s\tau + 1}$.

kħ	u(kh)	y(kh)
0	0	0
Ī	1	0
2	1	0
3	1	1.000
4	I	1.750
5	1	2.312
6	1	2.734
7	1	3.051
8	1	3.288

- (a) Give a procedure to identify a discrete time model, G(z), that relates y(kh) to u(kh), and identify the parameters.
- (b) Now determine the unknown parameters of P(s).
- 6. Consider the plant, $P(s) = \frac{e^{-2s}}{s}$.
- (a) Design a proportional feedback controller for the plant such that the gain margin is 8dB.
- (b) Determine the associated phase margin.
- (c) Determine the steady state output when the set point input is a unit step and sketch, approximately, the unit step response.

07-Elec-B2 Advanced Control Systems - May 2016

Inverse Laplace Transforms		
F(s)	f(t)	
$\frac{A}{s+\alpha}$	$arLambda e^{-lpha t}$	
$\frac{C+jD}{s+\alpha+j\beta} + \frac{C-jD}{s+\alpha-j\beta}$	$2e^{-\alpha t}\left(C\cos\beta t + D\sin\beta t\right)$	
$\frac{A}{(s+\alpha)^{n+1}}$	$\frac{At^n e^{-\alpha t}}{n!}$	
$\frac{C+jD}{\left(s+\alpha+j\beta\right)^{n+1}} + \frac{C-jD}{\left(s+\alpha-j\beta\right)^{n+1}}$	$\frac{2t^n e^{-\alpha t}}{n!} \left(C\cos\beta t + D\sin\beta t \right)$	

Inverse z-Transforms		
F(z)	f(nT)	
$\frac{Kz}{z-a}$	Ka ⁿ	
$\frac{(C+jD)z}{z-re^{j\varphi}} + \frac{(C-jD)z}{z-re^{-j\varphi}}$	$2r^n(C\cos n\varphi - D\sin n\varphi)$	
$\frac{Kz}{(z-a)^r} , r = 2,3$	$\frac{Kn(n-1)(n-r+2)}{(r-1)!a^{r-1}}a^{n}$	

07-Elec-B2 Advanced Control Systems - May 2016

Table of Laplace and z-Transforms (h denotes the sample period)		
f(t)	F(s)	F(z)
unit impulse	1	1
unit step	$\frac{1}{s}$	$\frac{hz}{z-1}$
$e^{-\alpha t}$	$\frac{1}{s+\alpha}$	$\frac{z}{z-e^{-\alpha h}}$
t	$\frac{1}{s^2}$	$\frac{hz}{(z-1)^2}$
cos βt	$\frac{s}{s^2 + \beta^2}$	$\frac{z(z-\cos\beta h)}{z^2-2z\cos\beta h+1}$
sin βt	$\frac{\beta}{s^2 + \beta^2}$	$\frac{z\sin\beta h}{z^2 - 2z\cos\beta h + 1}$
$e^{-\alpha t}\cos \beta t$	$\frac{s+\alpha}{\left(s+\alpha\right)^2+\beta^2}$	$\frac{z(z-e^{-\alpha h}\cos\beta h)}{z^2-2ze^{-\alpha h}\cos\beta h+e^{-2\alpha h}}$
$e^{-\alpha t}\sin \beta t$	$\frac{\beta}{\left(s+\alpha\right)^2+\beta^2}$	$\frac{ze^{-\alpha h}\sin\beta h}{z^2 - 2ze^{-\alpha h}\cos\beta h + e^{-2\alpha h}}$
t f(t)	$-\frac{dF(s)}{ds}$	$-zh\frac{dF(z)}{dz}$
$e^{-\alpha t}f(t)$	$F(s + \alpha)$	$F(ze^{ah})$