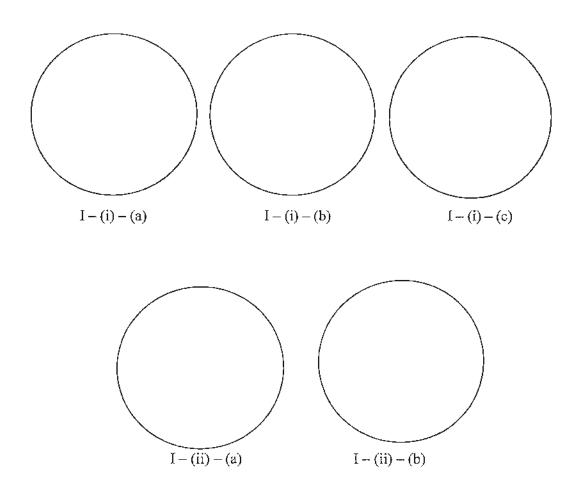
# National Examination, 2016

# Met-B6, Physical Metallurgy of Iron ands Steel

#### 3-Hour Duration


## NOTES:

- 1. If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper with a clear statement of any assumptions made.
- 2. Candidates may use one of two calculators, the Casio or Sharpe approved models.
- 3. This is a Closed Book exam.
- 3. There are a total of 7 questions with a total of 100 marks possible.

### I. (i) 12 marks, (ii) 8 marks.

In the circles provided below,

- (i) Draw schematically the microstructure of the SAE 1040 steel held at the following temperatures, respectively, for a relatively long period of time: (a) the microstructure at 1000°C, (b) the microstructure at 750°C and (c) the microstructure at 20°C after it is slowly cooled down from 750°C.
- (ii) Draw schematically the microstructure of the SAE 1090 steel held at the following temperatures, respectively, for a relatively long period of time: (a) the microstructure at 730°C, (b) the microstructure at 20°C after it is slowly cooled down from 730°C.



Page 2 of 8 Pages

- II. (i) 5 marks, (ii) 5 marks.
  - (i) Suggest an operation procedure (i.e. a process) for a thermomechanical treatment of a steel? Why is such treatment recommended for some applications?
    - (Hint: Use a double-nosed TTT curve to demonstrate your discussion)
  - (ii) What is an austempering procedure? In general, what kind of microstructure is obtained?
    - (Hint: Use a single-nosed TTT curve to demonstrate your discussion)

- III. (i) 5 marks, (ii) 5 marks, (iii) 5 marks.
- (i) Describe step by step how you would experimentally construct a *CCT* curve for a given steel.
- (ii) Explain the reason(s) qualitatively behind the "C" shape of a typical TTT curve, i.e. explain why a typical TTT curve has a "C" shape.
- (iii) What is the reason, for some steels, the TTT curve has a double-nosed shape?

- IV. (i) 5 marks, (ii) 5 marks, (iii) 5 marks.
  - (i) What is the driving force for a martensitic transformation in steel?
  - (ii) What is the phase-transformation micro-mechanism of martensite formation in steel? Does it only exist in steels?
  - (iii) Why does the hardness of martensite increase with increasing C content for most structural steels?

- V. (i) 5 marks, (ii) 5 marks, (iii) 5 marks (iv) 5 marks.
- (i) For many tool steels, such as high speed steel T1, see its chemistry in the table below

Grade <u>C</u> <u>Cr</u> Ni <u>W</u> <u>V</u> Cu <u>Mn</u> S P T1 0.65–0.80 3.75–4.00 0.3 17.25–18.75 0.9–1.3 0.25 0.1–0.4 0.03 0.03

for austenization the heating temperature must be as high as  $1250^{\circ}C(\pm/-)$ . Explain the reason.

- (ii) For this kind of steels, often the cooling for the quenching operation can be done either in still air or simply by a slow fan cooling in air. Why is such a processing procedure recommended and workable?
- (iii) In addition, for these steels, especially for T1 steel, there is a general requirement to temper the steel after quenching a minimum of three times. Why?
- (iv) What is the micro-mechanism that gives the steel very high hardness after the aforementioned treatment?

- VI. (i) 3 marks, (ii) 3 marks, (iii) 4 marks.
- (i) What is the chemical form and morphology of carbon in conventional gray cast irons?
- (ii) What is the chemical form and morphology of carbon in white cast irons?
- (iii) How would you produce white cast irons?

#### VII. 10 marks

Name three surface hardening approaches that are commonly employed by modern manufacturing industry and explain briefly the hardening mechanism(s) of each approach, respectively.